博客
关于我
理解MapReduce原理_mr
阅读量:374 次
发布时间:2019-03-05

本文共 960 字,大约阅读时间需要 3 分钟。

用自己的话概况一下

MapReduce是一个基于集群的计算平台,是一个简化分布式编程的计算框架,是一个将分布式计算抽象为Map和Reduce两个阶段的编程模型。(这句话记住了是可以用来装逼的)

基本概念–job和task

作业job是客户端要求执行的一个工作单元

– 输入数据、MapReduce程序、配置信息
任务task是MapReduce将作业拆成的小单元
– map任务和reduce任务
• Job Tracker节点(master)
– 调度task在Task Tracker上运行,协调所有作业运行
– 如果一个task失败,Job Tracker指定一个Task Tracker重新开始
• Task Tracker节点(worker)
– 执行任务,发送进度报告

分片的定义

– MapReduce把输入的数据划分成等长的小数据块,称为输入分片input split,简称分片

• 分片大小

– 分片越小,负载越平衡
– 异构时根据计算机性能分配任务个数
– 失败重启更加平衡
– 分片越小,框架开销越大

每个分片一个map任务

– 管理分配的总时间和构建map任务时间变大
– 默认HDFS块大小,128MB

• 计算数据本地化

– 在本地存有HDFS数据的节点上运行map任务
在这里插入图片描述
图解:
在这里插入图片描述

MapReduce详细过程

• 一个split(切片)起一个map任务

• map输出时会先将输出中间结果写入到buffer中 • 在buffer中对数据进行partition(分区,partition数为reduce数)和基于key的sort(排序),达到阈
值后spill到本地磁盘
• 在map任务结束之前,会对输出的多个文件进行merge(合并),合并成一个文件
• 每个reduce任务会从多个map输出中拷贝自己的partition
• reduce也会将数据先放到buffer中,达到阈值会写到磁盘
• 当数据该reduce的map输出全部拷贝完成,合并多个文件成一个文件,并保持基于key的有序
• 最后,执行reduce阶段,运行我们实现的reduce中化简逻辑,最终将结果直接输出到HDFS中

可以参考这:

https://www.jianshu.com/p/ca165beb305b

转载地址:http://varg.baihongyu.com/

你可能感兴趣的文章
Mysql:SQL性能分析
查看>>
mysql:SQL按时间查询方法总结
查看>>
MySQL:什么样的字段适合加索引?什么样的字段不适合加索引
查看>>
MySQL:判断逗号分隔的字符串中是否包含某个字符串
查看>>
MySQL:某个ip连接mysql失败次数过多,导致ip锁定
查看>>
MySQL:索引失效场景总结
查看>>
Mysql:避免重复的插入数据方法汇总
查看>>
MyS中的IF
查看>>
M_Map工具箱简介及地理图形绘制
查看>>
m_Orchestrate learning system---二十二、html代码如何变的容易
查看>>
M×N 形状 numpy.ndarray 的滑动窗口
查看>>
m个苹果放入n个盘子问题
查看>>
n = 3 , while n , continue
查看>>
n 叉树后序遍历转换为链表问题的深入探讨
查看>>
N!
查看>>
N-Gram的基本原理
查看>>
n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
查看>>
Nacos Client常用配置
查看>>
nacos config
查看>>
Nacos Config--服务配置
查看>>